Задолженность счет

2 2 сколько

2 2 сколько-2 2 сколько

Это смотря в какой ситуации. например - ведется собеседование по приему на работу бухгалтера. Директор (Д) задает только 1 вопрос "Сколько будет 2+2. Сколько будет 2+2×2=?  С первой грядки собрали 10 мешков картофеля, что в 10 раз меньше, чем со второй грядки,и в 2раза больше, чем с третьей. сколько. Сколько будет 2+2? 5 Комментариев DeauMoroz. дней назад.  2+2=БОРЩ. раскрыть ветвь 0.

2 2 сколько-Сколько будет 2+2

2 2 сколькоМежду тем культура мышления — это вовсе не ограниченный набор специализированных методов, пригодных для решения частных задач частных дисциплин, но нечто куда более глубокое. Поэтому единственным путем к овладению этими резервами сегодня остается только вдумчивый анализ и систематизация тех формально-логических действий и операций диалектической логики, лишь незначительная часть которых и затрагивается в настоящей работе. И еще — постоянная тренировка собственного сознания на решение интеллектуальных задач высшего уровня сложности, подобная той, которой ежедневно изнуряет себя любой честолюбивый спортсмен. Любая организация начинается с малого, нельзя упорядочить все. Организация нашего собственного сознания подчиняется этому же всеобщему закону. Но вместе с тем любой — даже самый малый — шаг в этом направлении — это ступень в восхождении к вожделенной вершине. Ведь похоже, что и остающаяся до поры неподвластной ни формальной логике, ни диалектике глубинная сфера нашей психики дисциплинирующим воздействием этих вечных инструментов человеческой мысли также может вовлекаться в единый водоворот организации научного поиска. А значит, и усвоение тех пусть даже микроскопических элементов общей организации мышления, которые рассматриваются здесь, не может пройти бесследно. Но все же следует помнить и о том, что великие результаты могут быть достигнуты лишь великим трудом, поэтому только малого — недостаточно. Мы сказали, что никаким количественным изменением нельзя перейти в иное измерение реальной действительности. Не существует формализованного алгоритмизированного механизма открытия нового, механизма творчества. На языке философии все то, что поддается алгоритмизации, носит количественный характер, поэтому формальное преобразование известного и количественное его изменение — это практически полные литературные синонимы. Но здесь нам могут возразить: Этот сформулированный великим немецким мыслителем закон гласит, что бесконечное накопление количественных отличий невозможно, рано 2 2 сколько поздно для любого объекта оно разрешается скачком, который вдруг разом переводит его в какое-то иное состояние. Но если так, то можно ожидать, что именно последовательное накопление и систематизация фактов сами по себе рано или поздно обязаны разрешиться очередным великим открытием. Однако жизнь показывает совсем другое: Как правило, это молодые люди, и уже в силу этого обстоятельства багаж накопленных ими знаний значительно уступал багажу их наставников. Но все же вовсе не случай лежал в основе их успеха хотя, конечно, встречались и случайности. Главное, что отличало их от своих собратьев по цеху, — это именно та дисциплина и культура мысли, о которых говорится. Поэтому не усвоенный объем знаний, но именно способность вовлечь в направленный организованный поток мышления скрытые от многих резервы собственного интеллекта послужили ключом к открытию новых измерений нашего мира.

Но раз уж затронут закон перехода количественных изменений в качественные, необходимо остановиться и на. Наиболее распространенным примером, иллюстрирующим его действие, является смена агрегатных состояний воды под воздействием постепенных температурных изменений. Известно, что мы можем нагревать или, напротив, охлаждать воду лишь до определенных пределов, за которыми она в сущности перестает быть водой. Другим, столь же классическим, является пример биологической эволюции. Дарвиновская концепция эволюционного развития также предполагает постепенное накопление каких-то мелких индивидуальных отличий, которые с течением времени выливаются в формирование принципиально новых видов. Правда, сам Дарвин полностью исключает скачок, о котором говорит этот закон. Он неоднократно приводит изречение древних: Но если быть строгим, то нужно сказать, что в действительности исключают скачок, вернее сказать, игнорируют существование кредит наличными сбербанк россии украина скрытой внутренней логики, и многие из тех, кто считает себя диалектиком. Мы еще увидим. Так что, если отвлечься от этого, теория Дарвина станет точной иллюстрацией действия этого диалектического закона. Но в самом ли деле философия обусловливает поступательное восхождение к вершинам организации не чем иным, как механическим накоплением каких-то мелких количественных изменений? Ни в коей мере. Кредит под 0 процентов годовых к современному понимание соотношения философских категорий качества и количества было дано Гегелемнемецким философом, создавшим теорию диалектики. Если перевести тяжелый язык Гегеля на более понятный и современный, то вкратце суть его учения о качестве и количестве сведется к следующему. Но, обращаясь к Гегелю, очень важно понять ключевое для качественно-количественного анализа обстоятельство: Мы уже говорили об этом в первой главе. Оно всегда индивидуально, и количественные характеристики любых вещей связаны с их индивидуальными особенностями. Поэтому для измерения каждого нового явления требуется уже какая-то своя, иная, шкала. Подчеркнем это обстоятельство, ибо оно чрезвычайно важно для всех последующих рассуждений. Об этом мы тоже говорили. Или последняя соломинка, которая, как кажется, должна была бы сломать хребет нашего верблюда, вдруг оказывается совсем не соломинкой, но денежной купюрой, которую мы пытаемся в виде взятки всучить государственному чиновнику. Пример со сменой агрегатных состояний воды, о котором мы уже упомянули, на самом деле не доказывает вообще.

Обращение к нему способно подтвердить только одно — полное непонимание существа сложных явлений. На самом деле в неявной форме там, где говорится о температурных накоплениях, в наших рассуждениях фигурирует вовсе не понятие воды, а принципиально другая категория, относящаяся к совершенно иному кругу явлений, — химическое соединение, которое обобщает в себе и характеристики воды, и свойства пара, и сбербанк кредит на образование льда. Поэтому в контексте смены агрегатных состояний мы говорим вовсе не воде, но о градации свойств, присущих именно этому обобщающему началу. Таким образом, допуская возможность перехода в какое-то новое измерение физической реальности за счет последовательного накопления незначительных количественных изменений, мы допускаем порочный логический круг. Иными словами, уже в самые предпосылки рассуждений нами в неявной форме закладывается то, что еще требует своих доказательств. Поэтому своя шкала количественной дифференциации есть, разумеется, и у этого обобщающего начала. На самом деле мы совершаем переход лишь в рамках шкалы, которая градуирует свойства совершенно иной субстанции. Ну, а доказать что бы то ни было, протащив в предпосылки все то, что его обусловливает, уже не трудно. Но попробуем все же разорвать этот порочный круг и ввести два принципиальных ограничения: Как только мы сделаем эти допущения, мы тут же обнаружим два фундаментальных обстоятельства. Она принадлежит куда более широкому классу физических явлений. Ведь здесь мы сталкиваемся с таким началом, как кинетическая часть внутренней энергии любого вещества, и эта энергия определяется хаотическим движением составляющих его молекул и атомов. Мерой интенсивности движения молекул как раз и является температура. Большой вклад в развитие представлений о теплоте был сделан немецким ученым, врачем Георгом Шталем К слову сказать, его авторитет был настолько высок, что в году он стал лейб-медиком прусского короля в те годы, как, впрочем, и во все времена вообще, на такие должности случайных людей не назначалиа в году приглашался в Петербург для лечения князя Меншикова, русского генералиссимуса и некоронованного правителя России. Именно Шталь в году сформулировал знаменитую флогистонную теорию. Узнав, что при прокаливании многих окисей с угольным порошком получаются чистые металлы, он предположил, что в угле содержится некое горющее начало — флогистон. Соединяясь с тем или иным веществом, флогистон передает ему свои горючие свойства, а при сгорании получившегося продукта снова выделяется из него в виде огня. Пытаясь объяснить увеличение веса металлов при прокаливании на воздухе, когда флогистон должен изгоняться из них, Шталь не побоялся даже предположить, что флогистон наделен отрицательным весом. Над это теорией впоследствии многие потешались, но отрицать тот факт, что она внесла весьма существенный вклад в развитие научных представлений.

Джоуль и другие физики того времени среди которых, кстати, был и наш великий соотечественник М. Было установлено, что теплота сама по себе не является веществом — это всего лишь энергия механического движения его атомов или молекул. Именно такого понимания теплоты и придерживается современная физика. Поэтому и вновь сформированная количественная шкала объединяла собой уже не агрегатные состояния воды, но явления, принадлежащие именно этому уровню. Между тем здесь, в круге физических явлений, обнимаемых этой шкалой, различия между водой и любыми другими химическими соединениями по существу исчезают, ведь что бы ни попало в сферу нашего внимания, в контексте температуры мы будем видеть только движение неких 2 2 сколько материальных частиц и не более. Иными словами, частиц, которые лишены всякой химической определенности. Все качественные отличия молекул и атомов в этом контексте полностью исчезают из поля нашего зрения, точно так же, как все индивидуальные особенности новобранцев исчезают из поля зрения того ротного старшины, который начинает строить их по ранжиру. Ну, и, конечно, в совершенствовании метода познания. Действительно, пока в нашем распоряжении имеются только такие средства температурного воздействия, которые не позволяют достичь ни нуля, ни ста градусов, ни о каких новых состояниях воды мы не узнаем; лишь появление новых практических средств делает возможным прорыв в область принципиально нового знания. Но этот прорыв происходит лишь однажды, поэтому о нем, как правило, очень скоро забывают. До тех же пор, пока этот прорыв не свершится, мы имеем дело не с качественными преобразованиями, но с круговращением в рамках одних и тех же качественных форм. Таким образом, качественные характеристики воды определяются вовсе не особенностями теплового движения ее молекул, но чем-то иным. Ведь все ключевые ее свойства описываются вовсе не в терминах теплофизики, а в терминах совершенно иной научной дисциплины — химии. Сама по себе температурная шкала не дает никакой возможности получить принципиально новое знание о природе воды, это новое знание обретается в первую очередь с помощью тех же средств познания, которые позволяют нам сформировать и само представление о полном диапазоне температуры. Температурная же шкала помогает упорядочивать, систематизировать и классифицировать полученную ранее информацию. Складывающаяся на каждом этапе познания классификация научной информации обеспечивает систематическое воспроизводство предсказываемых любой теорией результатов. Различие состоит примерно в том же, чем отличается, скажем, изобретение велосипеда от его серийного производства. Вероятно, это было открытие огня. Таким образом, в действительности даже неограниченное накопление количественных изменений не способно вывести никакой объект в качественно иное состояние.

Если бы это было возможно, было бы вполне реальным изменение траектории движения замкнутой системы только за счет внутреннего перераспределения масс, и решение задач о трисекции угла, квадратуре круга, удвоения куба, и, наконец, извлечение самого себя за волосы из болота. На самом деле процесс накопления любых количественных изменений всегда упирается в принципиально неодолимый предел, который часто предстает в виде некоторой бесконечности. И неважно, чем она будет представлена — бесконечно малыми, или бесконечно большими величинами. Заметим еще одно обстоятельство. Есть два принципиально отличающихся друг от друга вида изменений. Один из этих видов — это вращение в круге каких-то заранее заданных форм. Первый из них представляет собой род процесса, который, как правило, может быть неоднократно повернут вспять и, как правило же, без особых деформаций вернуться к исходному состоянию. Другими словами, это почти всегда обратимый процесс. Конечно, исключения здесь вполне возможны. Так столь же банальный пример с последней соломинкой, которая ломает хребет верблюда, иллюстрирует нам род необратимого движения, но и он относится все к тому же классу процессов. Этот поток необратим, и любая попытка повернуть его вспять оборачивается отнюдь не возвращением к исходному состоянию, но деградацией, разложением, разрушением. Или, по меньшей мере, необратимой деформацией. Последовательная смена агрегатных состояний воды под влиянием постепенного накопления температурных изменений — это вовсе не развитие, но вполне обратимый процесс, от века развивающийся в пределах одних и тех же форм. Философский же закон перехода количественных изменений в качественные описывает именно и только развитие, он в принципе неприменим к обратимым многократно повторяющимся переменам. Именно поэтому иллюстрировать и уж тем более доказывать его действие на этом избитом примере не всегда правильно, Если не сказать более жестко и точно: Здесь только простое совпадение форм — и не более. Но ведь в отличие от всех специфических законов частных научных дисциплин философские законы носят всеобщий характер. Это значит, что под его действие подпадает решительно все, что существует в нашем мире. Однако мы обнаруживаем, что никакие количественные изменения не в состоянии вывести объект за пределы какого-то определенного качества. Что стоит за этим выводом, ошибка наших построений или неправильность самого философского закона? Ни то, ни другое. Все дело в том, что как и в любой науке вообще, а не только в одной философии поверхность явлений — это еще далеко не их сущность. Мы же, иллюстрируя этот великий закон с помощью таких банальных примеров, как нагревание воды или механическое нагромождение груза на спину верблюда, скользим лишь по самой поверхности вещей. Наглядность примеров и случайное совпадение форм играет с нами очень злую шутку, ибо нам кажется, что мы сумели понять действительное содержание закона. На самом же деле перед нами только иллюзия, фантом нашего сознания.

Ответ заключается все в том же, что мы уже неоднократно видели здесь: Аутентичность недостижима в принципе. Для того, чтобы в полной мере понять это, необходимо обращаться к примерам совсем иного ряда: Или, быть может, предстоит обнаружить, что никакой переход здесь вообще невозможен. Вот и обратимся именно к ним, ибо именно они и являются точной моделью соотношения качественных и количественных изменений. Теория относительности утверждает, что движение со скоростью, которая превышает световую, невозможно, ибо приближение к ней влечет за собой неограниченное возрастание массы движущегося объекта, а значит, и экспоненциальное возрастание энергетических затрат, связанных с его ускорением. Другими словами, сообщение скорости света любому материальному объекту, сколь бы ничтожной но вместе с тем отличной от нуля ни была его исходная масса, потребовало бы энергетических ресурсов всей Вселенной. Понятно, что основных вариантов — два. В одном случае донором выступает потенциал внешнего объекта, в 2 2 сколько расходуется собственный потенциал тела. Впрочем, возможны и промежуточные решения, когда в придании ускорения участвуют оба объекта. Если донор внешний, конвертируется внешняя масса, если внутренний — своя собственная. Поэтому на сообщение заранее заданного ускорения должна расходоваться одна и та же энергия или конвертироваться одна и та же масса как в случае внешнего источника энергии, так и в случае расхода своего собственного потенциала. Выразим энергетические соотношения с помощью простого графика, одной координатной осью которого является скорость от нуля до скорости светадругой масса от нуля до единицы. Таким образом, зависимость между достигаемой скоростью и расходуемой массой предстанет в виде некоторой кривой, исходящей из центра координат 0, 0 и оканчивающейся в точке, проекция которой на ось скоростей совпадает со скоростью света, на ось масс — с единицей. Легко понять, что любая промежуточная проекция на любую из координатных осей этого графика даст представление о второй величине. График будет одним и тем же как для внешнего источника энергии, так и для внутреннего. Разница лишь в следующем. В логическом пределе — это может составить полную массу всей Вселенной. Во втором — собственная начальная масса именно того тела, которому и нужно сообщить ускорение. В соответствии с известными положениями теории относительности сообщение максимальной скорости с может быть достигнуто в случае расходования собственного потенциала тела — за счет обращения всей его массы, в случае внешнего энергетического источника — за счет конвертирования всей массы Вселенной. Другими словами, скорость света может быть достигнута только тогда, когда в нуль обращается либо собственная масса тела, либо полная масса всей Вселенной.

Ясно, займы по паспорту без проверок ни тот, ни другой вариант физически невозможны, но как некий математический предел они вправе учитываться. В любом случае предельная скорость, которую практически можно сообщить телу, будет далека от скорости света даже там, где его масса составляет бесконечно малую, но все же отличную от нуля величину. Поэтому здесь речь может идти лишь о всем спектре промежуточных значений между нулем и этой по сегодняшним понятиям предельной физической величиной. Но именно потому, что наш график описывается математической кривоймы обязаны заключить: В том же случае, когда сопоставляются отрезки, тяготеющие к противоположным полюсам координатных осей, они могут отличаться друг от друга на много порядков. Кстати, здесь-то со всей наглядностью и обнаруживается существо нашего вопроса: При этом длины этих смежных отрезков, в свою очередь, должны неограниченно стремиться к нулю. Выход за пределы скорости света может быть осуществлен если, разумеется, физическое решение вообще существует только за счет действия сил, управляющих развитием какой-то более широкой — сегодня еще неизвестной науке — реальности. Впрочем, и в этом гипотетическом континууме рано или поздно должны обнаружиться какие-то свои количественные аномалии, которые, в свою очередь, со временем смогут стать и стимулом, и ориентиром дальнейшего научного поиска. Другим примером могло бы служить преодоление абсолютного температурного нуля. Ведь снижение скорости теплового движения молекул до нуля является именно абсолютным непреодолимым пределом для любых микроэволюционных изменений любого материального тела. Даже самое буйное сознание отказывается вообразить действительность, в которой действовали бы какие-то отрицательные значения скоростей. Таким образом, и здесь решение если, разумеется, оно существует может быть достигнуто только в сфере действия каких-то иных, более фундаментальных, чем известные ныне, механизмов. Однако пока эти рубежи не только не преодолены, но даже неизвестно, можно ли вообще преодолеть. Поэтому сегодня, на том уровне развития взять кредит по паспорту без справок нашего познания, который сложился, мы вынуждены мириться с тем, что в области этих критических точек даже микроскопические продвижения к расчисленному теоретическому пределу потребуют от нас неограниченно возрастающих энергетических расходов. Мы знаем, что любое тяготение может быть преодолено увеличением скорости удаления материального тела от его центра; но здесь даже свет не в состоянии 2 2 сколько наружу.

Отклонение же от этого результата может достигать сколь угодно больших величин. Таким образом, в понимании существа великого закона перехода количественных изменений в качественные обнаруживается все то же, что увиделось нам и в анализе нашей арифметической задачи. Сначала охотное согласие, подкрепляемое стандартным набором расхожих штампов, затем — едва ли не полное отрицание того, во что так легко уверовалось вначале, и лишь потом — бездна, в которую еще только предстоит по-настоящему погружаться. Ничуть не бывало, как за опущенным занавесом совершается какая-то своя стремительная осмысленная работа по перемене костюмов и декораций, так и во время качественного скачка совершается какое-то свое действие. Это вовсе не мгновенная трансмутация качественных состояний из одного в другое, но процессв основе которого действуют какие-то свои скрытые механизмы. Просто имеющиеся в нашем распоряжении средства познания, включая нашу логику и формальную, и диалектическуюпока не в состоянии эти механизмы раскрыть может быть, именно поэтому процесс и предстает перед нами в виде внезапного скачка. Отсюда и вся та таинственность, которая окружает их действие. А это значит, что нам до сих пор неизвестен действительный механизм всеобщего развития. Другой скрывает от нас тайну творчества. Оба эти пробела образуют собой, может быть, самое концентрированное выражение качественного скачка, логика же и того и другого образует собой его внутренний механизм. Просто и эта логика, и этот механизм пока еще сокрыты от. Проникновение же в их тайну может стать куда более революционным, нежели ставшее возможным с изобретение микроскопа открытие микромира или установление тех релятивистских эффектов, которые описываются теорией относительности. Логика и механизм качественного скачка могут обнаружить совершенно новые, о которых сегодня мы не можем и помыслить, измерения всей окружающей нас действительности. Так что можно суммировать: В сущности обе эти тайны до некоторой степени представляют собой зеркальное отражение друг друга. В самом деле, ведь все наши знания — это отражение объективной реальности, поэтому и логика получения нового знания, логика творчества в свою очередь должна отражать алгоритм становления нового качества, иными словами всеобщего развития. Нам здесь не дано раскрыть ни скрытые пружины всеобщего развития природы, ни мета-логику человеческого творчества. Но уже увиденное нами здесь дает право утверждать, что тектонические сдвиги, которые каждый раз обеспечивают прорыв человеческого сознания на новый уровень, как кажется, происходят в формах мышления, которые сокрыты от нас именно той бездной, которая обнаруживается за этими пробелами в общей системе знаний. Только развитие этих потаенных процессов со временем приводит к перевороту в сознании. Но мы вправе утверждать и другое: Усвоение же основных принципов организации исследовательской мысли — это уверенный шаг также и в их постижении. По существу первым, кто указал на принципиальную невозможность выхода в иное измерение физических явлений за счет каких-то чисто количественных модификаций был древнегреческий философ Зенон из Элеи.

Из всех его трудов не осталось практически ничего, кроме четырех апорий. Но эти знаменитые апории более двух тысяч лет не давали покоя ни математикам, ни физикам. И, разумеется, философам, ибо доказывали и продолжают доказывать категорическую невозможность качественного развития за счет поступательного накопления мелких количественных изменений. Из пункта А в пункт В выбегает черепаха. Через некоторое время вслед за ней устремляется быстроногий Ахиллес. Утверждается, что Ахиллес никогда не обгонит черепаху. Между тем здесь уместно напомнить, что, сын богини Фетиды, Ахиллес для греков был не только одним из храбрейших героев, но еще и символом скорости. Словом, чем-то вроде современного реактивного истребителя. Поэтому отстаиваемый апорией тезис для древних был куда более парадоксален, чем это сегодня представляется. Но логика Зенона безупречна и неуязвима: Таким образом, быстроногий Ахиллес все время будет находиться позади черепахи и никогда не сможет обогнать. Словом, аргументы древнегреческого мыслителя еще более двух тысячелетий тому назад доказывали необходимость введения в процесс количественных изменений какой-то принципиально вне-количественной силы, другими словами, доказывали то, что этот процесс может быть разорван только обращением к совершенно иному кругу явлений, банки реструктуризация присуща какая-то своя, новая, шкала градации. Кстати, и наиболее известной в истории попыткой опровержения доказательств Зенона было принципиально вне-логическое действие. Еще древние оставили связанный с этим анекдот: По мнению же Зенона опровержение физическим действием на самом деле не доказывало ничего, ведь он и сам прекрасно знал, что и стрела долетит к цели, и Ахиллес догонит и даже обгонит черепаху. Но этот парадокс формулировался чисто логическими средствами, следовательно, и опровергать его нужно было только средствами логики. Побить-то побил, но вот заслуженно ли? Ведь по большому счету оба утверждали одно и то. И тот, и другой прекрасно знали, что на практике черепахе никогда не сравниться не то что с Ахиллесом, но даже и с каждым из. Но если учитель утверждал, что логика не позволяет доказать это, то ученик своим действием демонстрировал, что для решения проблемы нужно выйти во вне-логическую сферу. Есть ли здесь противоречие? В сущности уже эти зеноновские апории являлись строгой формулировкой того непреложного факта, что поступательным накоплением чисто количественных изменений можно объяснить только процесс таких перемен, которые по-прежнему остаются в строго определенных качественных рамках, любые же макроэволюционные, иначе говоря, революционные, качественные преобразования могут быть объяснены только действием каких-то иных механизмов. Так что в действительности забудем на минуту о временных смещениях ни Гегель, ни Зенон, ни его оппонент нисколько не противоречат друг другу, все они — только разными словами — говорят об одном и том же: Для его постижения нужен прежде всего прорыв нашего собственного сознания в какое-то иное измерение человеческого разума.

Подготовка же этого прорыва и составляет собой, может быть, главное назначение любого, кто вступает в науку. Многие количественные шкалы, с помощью которых мы градуируем изучаемые явления, в действительности являются средством лишь косвенного анализа. В силу того, что мы так и не располагаем средствами непосредственного прямого измерения, у нас нет никакой уверенности в том, что одноименные количества даже однородных, то есть уже приведенных к единому основанию, вещей равны друг другу. Все это свидетельствует о том, что подлинное существо явлений все еще ускользает от. Поэтому анализ любого из них — во всяком случае сегодня — не может считаться законченным. Поэтому нет ничего более ошибочного в науке, чем видеть в тех результатах, которые содержатся в различного рода справочниках и энциклопедиях, конечную навсегда застывшую истину. Сама истина — это постоянно развивающееся начало, поэтому все эти результаты — не более чем опора для дальнейшего восхождения, и куда более важным чем результат в науке является методология. Любой анализ, как впрочем, и познание вообще, развивается по некоторому подобию спирали через отрицание каких-то исходных принимаемых на веру истин и последующее опровержение самих отрицаний. Но философское отрицание — это вовсе не отбрасывание того, что стало привычным, и не механическая замена его чем-то противоположным. Все то, что отрицается, в каком-то преобразованном, переосмысленном виде сохраняется во всех дальнейших построениях. Однако на новом уровне познания все старые истины понимаются нами уже не как всеобщие и абсолютные, но как положения, сохраняющие справедливость лишь в жестко ограниченном круге условий. Целью любого познания является открытие новых измерений истины. Задача состоит в том, чтобы преодолеть пределы того жесткого круга условий, которые ограничивают справедливость уже известного. Но путь в новые измерения — лежит вовсе не через накопление и накопление каких-то дополнительных сведений об уже установленных вещах. Все это может лишь подвести нас к тому моменту, когда потребительский кредит в спб для пенсионеров действие каких-то иных, пока недоступных нашей логике, механизмов. Разумно все же предположить, что и действие этих механизмов тоже подчинено каким-то своим барнаул кредит без официального трудоустройства, своим законам. Эти правила, как представляется, и должны составлять собой некий единый метод творчества.

2 2 сколько

Просто сегодня тайна творчества пока еще сокрыта от нас за семью печатями. И, может быть, единственный путь к ней — это поступательное овладение основополагающими принципами общей организации нашего собственного мышления. Культура и дисциплина мысли — вот единственный залог успеха. И еще — постоянная тренировка собственного сознания. Без этого любой исследователь навсегда обречен остаться простым ремесленником от науки. Можно, конечно, видеть в нем абстрактный символ чисто математической операции, которая вообще не имеет никакого аналога в окружающем нас материальном мире. Уж если сам математический объект, над которым совершаются все математические действия, может быть совершенно отвлеченным от всякой физической реальности, то почему бы и этим действиям не иметь подобную же природу? Оглянемся назад на пройденный нами путь. Словом, на всем протяжении анализа нас интересовала вовсе не абстрактно-логическая чистота некоторой трансцендентной сущности, но именно реальное физическое содержание этого математического уравнения. Поэтому и сам анализ выполнялся нами как последовательное восхождение ко все большей и большей конкретности. Таким образом, если мы пытаемся определить для результата математического сложения хотя бы некоторые опорные ориентиры, которые бы позволили нам судить о всем спектре его применимости к материальной действительности, то и для центрального пункта исследуемой нами формулы нужно найти такие же маркирующие точки, которые давали бы возможность распространить все получаемые выводы на то, что окружает. Человеческое познание — это ведь вовсе не отвлеченная от реальной действительности умственная гимнастика. Для сугубых материалистов его цель состоит в практическом овладении объективной реальностью. Для тех, кто не верит в материю, можно сказать и по-другому: И в том и в другом варианте человек познает окружающий его мир для того, чтобы выполнить какую-то высшую возложенную на него самой ли природой, нашим ли Господом? Словом, какую позицию мы ни займем, вывод будет. А значит, перед лицом этой истины даже самые непреодолимые идеологические различия в конечном счете оказываются не столь уж и глубокими. Все это говорит о том, что и составившее предмет нашего изучения действие в свою очередь должно хоть как-то проецироваться на реальные физические процессы, протекающие в природе. В противном случае само уравнение как бы повисает в воздухе, а возложенная на нас миссия так и остается неисполненной. Между тем, если в операции сложения видеть не абстрактный символ, но специфическое выражение строго определенных материальных процессов, мы обязаны считаться с тем, что они неизбежно будут вызывать какие-то деформации в окружающей нас действительности.

Это и понятно, ведь в мире объективной реальности взаимосвязано. Мыслилось, что любое событие, происходящее в какой-то одной точке нашего мира, так или иначе отзывается сразу во всей Вселенной. Правда, такой взгляд представлялся абсолютным только в той системе мироздания, которая описывалась известными законами Ньютона. Позднее эйнштейновский постулат невозможности движения со скоростью, превышающей скорость света, наложит определенные ограничения на подобные представления. Но и после внесенных Эйнштейном ограничений всеобщая связь явлений все же останется господствующей идеей. Между тем подобная связь означает собой, что любые процессы, влекут за собой изменения не только в том, что непосредственно вовлечено в них, но и во всем их окружении. Оборотная сторона этого тезиса гласит: В действительности есть лишь некая фикция, голая виртуальность и не. Мы же говорим о прямо противоположном всему виртуальному — о физической реальности. Но что за физические процессы могут быть представлены исследуемой нами операцией сложения? Самый первый и, может быть, самый простой вариант решения, который напрашивается здесь — это простой механический перенос одного из слагаемых на место другого. Вот и присмотримся к. Вообразим, что именно их и предстоит совместить в некоторой условной точке пространства. Этот интуитивно понятный процесс, на первый взгляд, не вызывает никаких вопросов, и мы, как правило, вообще не задумываемся над тем, что здесь могут скрываться какие-то подводные камни. А между тем они. Если слагаемые находятся в разных точках пространства, то абсолютное соответствие тому результату, который предсказывает математика, может быть достигнуто лишь при соблюдении строго определенных условий. При этом даже неважно, какое именно расстояние разделяет слагаемые, неопределенно малое или неопределенно большое. Между тем реальное стечение именно этих-то условий и вызывает сомнение. Во всяком случае можно со всей определенностью утверждать, что первое из них в принципе невыполнимо, ибо в мире физической реальности никакой перенос никакого материального тела не может быть выполнен без совершения определенной работы, без каких бы то ни было энергетических затрат. Уже одно только это обстоятельство наводит на размышления: Мы говорили о сложении парно — и непарнокопытных; между тем всякий фермер знает, что любое перемещение скота влечет за собой неизбежные потери живого веса. Их еще можно сокращать до какого-то разумного предела, но решительно невозможно свести к нулю. Если этот житейский пример ничего нам не говорит, то можно обратиться к другому, граничащему с чем-то анекдотическим, — когда именно таким образом понятому сложению подвергаются все те же египетские пирамиды и неоднократно же упоминавшиеся нами пароходы.

Ясно, что в этом случае деформации качества наших слагаемых должны были бы носить куда более катастрофический характер, ибо сегодня имеющиеся в нашем распоряжении технические средства не в состоянии выполнить такое без причинения серьезного ущерба этим сооружениям. Если не убеждает и эта бредовая, но вместе с тем красноречивая иллюстрация, то можно обратиться к самому общему решению. То есть к тому, когда наличествуют лишь аморфные массы и ничего более, и вот именно им и нужно сообщить какое-то ускорение. Мы уже говорили о том, что известные положения теории относительности эйнштейновский принцип эквивалентности массы и энергии предполагают принципиальную возможность конвертирования в энергию определенной части массы движущейся системы. Таким образом, если сообщение ускорения материальному объекту совершается за счет его собственного массово-энергетического потенциала, то необратимое изменение его массовых характеристик неизбежно. Самый простой и, может быть, самый наглядный случай — это когда в топке двигателя сжигается некий запас угля дров, керосина, чего угодно. Между тем топливо — это ведь тоже элемент общей структуры движущегося объекта, поэтому с его расходованием — иногда радикально — изменяются не одни только массовые характеристики. Поэтому уже само перемещение его в пространстве под влиянием каких-то приложенных к нему сил обязано повлиять на его качественную определенность. Правда, там, где скорости движения незначительны, то есть существенно отличаются от скорости света, дефект масс должен быть микроскопическим. Но это не меняет решительно. Мы ведь добиваемся полной математической строгости, а математическая строгость — вещь не относительная, но абсолютная. Вспомним классические примеры, оставившие заметный след в истории математики, такие, как квадратура круга, трисекция угла или удвоение куба. Геометрическими построениями, которые обязаны выполняться лишь циркулем и линейкой, на самом деле можно обеспечить любую заранее заданную степень приближения к идеальному решению. Невозможно лишь одно — достижение самого идеала. Однако геометрия, как мы знаем, не принимает никакого приближенного решения, она признает только абсолютное, но абсолютное — это давно уже доказано — совершенно невозможно. Вот так и здесь, сколь бы микроскопическими ни были вызываемые простым перемещением в пространстве деформации, игнорировать их категорически недопустимо. В этом случае вполне допустимо предполагать, что перемещаемый нами предмет может остаться тождественным самому. Если, конечно, на время забыть о том обстоятельстве, что само ускорение, сколь бы незначительным оно ни было, способно служить причиной каких-то деформаций внутренней структуры того тела, которому оно сообщается. Однако абсолютная точность результата не достигается и в этом случае, ибо определенные изменения массово-энергетических характеристик претерпевает некая 2 2 сколько широкая система, которая и сообщает объекту необходимое ускорение. Все эти столь разные примеры говорят об одном и том же: Просто здесь аномалии, вызванные внутренней деформацией качества, вернее сказать, обусловленные интригой сказки, как и положено в сказке, оказались выраженными куда более рельефно.

Сейчас мы убеждаемся в. Обе эти категории представляют собой отнюдь не автономные друг от друга начала, но разные стороны одного и того. Впрочем, здесь можно сделать и другое наблюдение. Рассматриваемый на приводимых примерах аспект математического действия закономерно вплетается в общий контекст физических законов сохранения. Заметим, что их всеобщность и обязательность таковы, что они вполне могут рассматриваться и как философские. Впрочем, многими исследователями они и принимаются в качестве таковых. Словом, в итоговый результат нашего сложения обязано войти абсолютно все, включая и те компенсирующие деформации, которые происходят в дальнем окружении слагаемых нами вещей. Мы уже приводили высказывание, когда-то звучавшее как аксиома: Возвращаясь к этому красивому образу, можно сказать, что мы обязаны искать все изменения, происходящие в окружающем нас звездном мире, ибо только полная их сумма способна дать точный результат того действия, в итоге которого сплетается венок. Но мы рассмотрели только первое из двух приведенных выше 2 2 сколько. Между тем второе, в свою очередь, наводит на серьезные размышления. Мы сказали, что здесь предполагается строго однородное пространство. Можно, конечно, предположить, что оно и на самом деле именно. Интуитивное представление о таком однородном пространстве долгое время господствовало в сознании ученых, но только Ньютон впервые дал ему строгое определение. При этом Ньютон вынужден был различать абсолютное и относительное пространство. Согласно его определению абсолютное — это какое-то особое начало, которое существует совершенно независимо от самого вещества Вселенной. Абсолютное пространство совершенно неподвижно, непрерывно, однородно то есть одинаково во всех своих точках изотропно другими словами, одинаково по всем направлениямпроницаемо другими словами, никак не воздействует на материю и само не подвергается никаким ее воздействиям и бесконечно. Оно обладает только тремя измерениями. Однако сложность состоит в том, что абсолютное пространство вследствие полной неразличимости всех своих составных частей принципиально ненаблюдаемо, а значит, и непознаваемо человеком. Оно не поддается даже простому измерению. А вот это уже вещь в высшей степени сомнительная: Кроме того, здесь напрашивается и другой вопрос. Ведь если какое-то явление в принципе ненаблюдаемо нами, встают сильные сомнения в самом его существовании. Ведь в этом случае мы не в состоянии ни доказать, ни опровергнуть его наличие. Но если мы ни при каких обстоятельствах не можем доказать его наличие, почему нужно верить в его существование? Ведь даже вера в Бога, в значительной мере опирается на различного рода знамения, чудеса, наконец, на зафиксированное евангелистами земное служение Его Сына. Словом, на вещи, которые в той или иной системе менталитета могут рассматриваться как определенная доказательная база.

Если бы не существовало всего этого, то, автоломбард екатеринбург без проверки кредитной истории, не существовало бы и самого феномена религиозной веры. Может быть, именно поэтому сам Ньютон был вынужден отличать от абсолютного пространства относительное, которое сводится к протяженности и взаиморасположению материальных тел. Только оно поддается дифференциации, только оно поддается количественному измерению, только с его частями можно совершать какие-то математические действия. Следовательно, и предметом науки может быть только относительное пространство. Если не считать Лейбница, который во многом вообще не принимал Ньютоновскую картину мира, и Канта, о взглядах которого на пространство здесь уже говорилось, серьезной критике ньютоновские представления были подвергнуты только Махом, австрийским физикомоставившем глубокий след в развитии общих представлений о мире. В году он указал на то, что наши представления о пространстве, времени и движении мы получаем только через взаимодействие вещей друг с другом. Во всех наших представлениях об этих материях выражается глубочайшая и всеобщая их взаимосвязь и взаимозависимость. Критика Махом классических понятий времени, пространства и движения стала очень важной в гносеологическом плане для Эйнштейна. Его анализ основополагающих понятий механики сыграл значительную роль в том направлении общего развития физики, которое вело к появлению теории относительности. Сам Эйнштейн в некрологе в году оценил Маха как предтечу теории относительности. Так что для решения каких-то практических задач мы обязаны обращаться вовсе не к абсолютному, но к относительному пространству. А вот оно даже по Ньютону вовсе не обязано быть строго однородным во всех своих областях, ведь уже для того, чтобы быть познаваемым, оно должно быть неодинаковым в разных своих точках. В эйнштейновской же картине мира пространство тем более неоднородно, в зависимости от степени концентрации масс оно может быть значительно деформировано. Но если так, то любое перемещение — это всегда перемещение из области одних деформаций пространства в область каких-то. Есть ли у нас полная уверенность в ренессанс кредит форум, что при таком перемещении с самим объектом не происходит решительно ничего? Категорически утверждать, как кажется, невозможно, здесь допустимо только строить гипотезы. Впрочем, вывод, который напрашивается здесь, состоит вовсе не в разрешении проблем пространства. Предмет нашего исследования вовсе не оно, методология научного познания — вот что рассматриваем мы. Между тем наблюдение, которое сейчас делаем мы, имеет именно методологическую ценность. Оказывается та непритязательная математическая операция, о существе которой мы никогда не задумываемся, на деле требует глубокого осознания.

Но главное состоит в том, что она оказывается в принципе непостижимой вне каких-то общих идей, касающихся устройства всего нашего мира, того большого Космоса, ничтожной частью которого является вся наша солнечная система. Мы явственно видим, что вне фундаментального контекста физических законов сохранения, вне тех или иных концепций мирового пространства не может быть осознано даже самое простенькое действие, которое усваивается нами еще в начальной школе. Таким образом, вывод гласит о том, что никакой результат познавательной деятельности не может быть понят до конца сам по себе, в отрыве от. Полное постижение всеготого, что открывается нам, пусть это будет даже самая банальная истина, вроде той, которая исследуется здесь, достигается только в единой системе общих представлений о мире. Без этого мы обречены скользить лишь по самой поверхности явлений. Подобное же скольжение — это еще не наука, даже если оно сертифицировано ученой степенью. Впрочем, и мы затронули пока еще только самую поверхность явлений. Ведь в математике мы рассматриваем сумму как некоторое новое единое синтетическое образование. Уже упоминавшийся нами Иммануил Кант говорил, что науку интересуют в первую очередь синтетические суждения. Кстати, сам Шерлок Холмс понимает свой метод именно во втором, а отнюдь не в первом значении, ибо в действительности его метод куда ближе к индукции, поскольку к синтетическому результату он всякий раз восходит, суммируя анализ отдельных разрозненных фактов. Наука занимается только неизведанным, между тем вовсе не аналитические суждения содержат в себе главный интерес для. Конечно, и здесь кроется много еще неизвестного для науки, но в сущности все это неизвестное относится к такому роду, что его вычисление можно поручить и ученикам. Любое же синтетическое суждение может быть, самым простейшим его примером как раз и является математическое сложение всегда обнаруживает в себе принципиальную новизну, нечто такое, что ранее не содержалось ни в одном из слагаемых. Это очень важный пункт, который никак не должен пройти мимо нашего внимания. А следовательно, именно здесь должна скрываться самая глубокая тайна эвристики, именно на этом пункте должна сосредоточиваться творческая мысль подлинного исследователя. Известно, что именно таким — выполненным в виде мысленного эксперимента — объединением был установлен один из важнейших законов механического движения. Здравый смысл, обыденное сознание, обывательская интуиция можно называть это как угодно подсказывали: Но вот это поверхностное представление было подвергнуто строгому логическому анализу. Предположим, — сказал Галилей, — что тяжелые тела и в самом деле падают быстрее, чем легкие.

2 2 сколькоСколько протянет автохлам из Литвы? Часть 2 : Завтра в путь!

Тогда, присоединив к какому-нибудь тяжелому телу более легкое, мы должны были бы замедлить его движение. Но суммарная масса объединенных в единую связку тяжелого и легкого тел больше, чем масса одного только тяжелого. А значит, как единое образование связке они обязаны падать быстрее, чем одно тяжелое. Но целостная система 2 2 сколько может падать одновременно и быстрее и медленнее одного тяжелого ее элемента. Поэтому вывод, вытекающий из этого знаменитого мысленного эксперимента, однозначно гласил: Если искать некий общий физический аналог этого математического объединяющего действия, нужно прежде всего обратиться именно к процессам синтеза.

2 2 сколько

Вот один из них — синтез атомных ядер. Мы знаем, что сегодня массы ядер можно измерить с очень высокой точностью при помощи масс-спектрометра. При этом оказывается, что полная масса атомного ядра всегда меньше суммы масс всех составляющих его нуклонов. Сегодня установлено, что силы притяжения, или, другими словами, энергия связи, которая удерживает вместе входящие в состав ядра протоны и нейтроны, очень интенсивны на расстояниях порядка 10—13 см и чрезвычайно быстро ослабевают с увеличением дистанции. Установлено также, что 2 2 сколько переходе от одного элемента Периодической системы Менделеева к другому энергия связи меняется, поэтому для отделения одной частицы от остальных требуется различные усилия. Превращение одних элементов в другие путем деления тяжелых ядер или соединения легких в более тяжелые приводят к изменению энергии связи. При этих процессах масса получившихся ядер снова оказывается меньше исходных элементов. Ядра наиболее тяжелых атомов, которые стоят в конце Периодической системы, менее устойчивы, чем ядра элементов, расположенных в ее середине. Поэтому их удается расщепить, в результате чего образуются элементы с меньшими атомными весами. В свою очередь, ядра атомов, расположенных на противоположном полюсе системы элементов, выигрывают в устойчивости при их слиянии в более тяжелые. В том и в другом случае, то есть и при делении тяжелых, и при синтезе легких выделяется огромное количество энергии. Но, повторим, силы, которые связывают атомное ядро, действуют лишь на очень незначительных расстояниях. Между тем, кроме них, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга. В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Уолтон использовали этот принцип в своих экспериментах, проводившихся в в Кавендишской лаборатории Кембридж, Великобритания. Облучая литиевую мишень ускоренными в электрическом поле протонами, они наблюдали взаимодействие протонов с ядрами лития. С тех пор изучено большое число подобных реакций. Здесь n — нейтрон, g — гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт МэВ. Вообще говоря, взаимосвязь энергии с инерциальной массой впервые была открыта английским физиком Дж. Томсоном — еще за четверть века до Эйнштейна, в году. Им было установлено, что масса движущегося заряженного шара возрастает на величину, пропорциональную энергии электростатического поля. Позднее, в году французский ученый Жюль Анри Пуанкаре — пришел к выводу, что для сохранения принципа равенства действия противодействию необходимо предположить существование у электромагнитного поля некоторой плотности массы, которая в с2 раз меньше плотности энергии поля.

В году австрийский физик Ф. Этот же закон он предложил распространить на все виды энергии. Так что в действительности фундаментальный вывод о связи между энергией и массой не был внезапным наитием какого-то одного гения, но венчал долголетние усилия многих ученых. И вот благодаря их поиску сегодня обнаруживается, что в результат, казалось бы, частного сложения совершенно незначительных, даже исчезающе малых, величин вовлекаются какие-то могущественные таинственные силы природы, и действие именно этих сил, которые мы отчасти сумели подчинить себе за прошедшие десятилетия, изменило облик всей нашей цивилизации. Мы вновь и вновь убеждаемся, что истина подобна линии горизонта: Вне контекста самых фундаментальных физических законов этот результат, как оказывается, вообще не может быть осмыслен. Схожую картину, заставляющую нас обращаться к куда более широкой действительности, нежели подлежащие непосредственному сложению величины, наблюдается и в химическом синтезе. Так, например, в химии различают эндо — и экзотермические реакции. Эндотермическая от греческого endon — внутри и therme — тепло — это химическая реакция, при которой реагирующая система поглощает тепло из окружающей среды. В свою очередь, экзотермическая от греч. Существо этих реакций может быть понято из первого начала термодинамики. Первое начало, как известно, по существу выражает закон сохранения энергии. Поэтому для системы, окруженной замкнутой границей, через которую не происходит переноса вещества, справедливо соотношение: Если процесс — химическая реакция, то обычно ее проводят в таких условиях, чтобы можно было отделить энергию химического превращения от энергии, связанной с одновременными изменениями температуры или давления. Поэтому энергию теплоту химической реакции обычно определяют в условиях, в которых продукты находятся при тех же температуре и давлении, что и реагенты. Энергия химической реакции тогда определяется теплотой Q, полученной от окружающей среды или переданной. Измерение Q может быть проведено с помощью калориметра подходящего типа или проведения в сосуде химической реакции, теплота которой известна. Как погасить кредит без процентов приведенное нами уравнение, внутренняя энергия реагирующей системы определяется не только количеством высвобожденной или поглощенной теплоты. Она также зависит от того, сколько энергии система затрачивает или приобретает посредством произведенной работы. При этом работа может совершаться как самой системой, так и над системой.

Кстати, о работе, которая производится самой системой, имеет вполне достаточное представление любой, кому доводилось разбавлять спирт до привычной русскому национальному вкусу концентрации: Понятно, что термодинамика процессов в этих случаях будет существенно отличаться, и в первую очередь — знаком величин. Этот вывод был сделан Германом Ивановичем Гессом —российским химиком, одним из основоположников термохимии, в году на основе экспериментальных фактов еще до классических опытов Джоуля, которые продемонстрировали эквивалентность теплоты и других форм энергии. Гесс доказал, что теплота химической реакции, протекающей через несколько последовательных стадий, равна алгебраической сумме теплот отдельных промежуточных реакций. Закон Гесса, как отметил Герман Л. Гельмгольц —великий немецкий ученый, который впервые в математически обосновал закон сохранения энергии и показал его всеобщий характер, служит прямым экспериментальным подтверждением применимости закона сохранения энергии к энергетике химических реакций. Словом, и в рядовом химическом синтезе мы замечаем, что в этом мире взаимосвязано. Ничто не может существовать само по себе, и если наше исследование ограничивается исключительно тем, что происходит за стеклом пробирки, мы рискуем упустить из виду едва ли не самое главное. Перед нами раскроется лишь то, что лежит на самой поверхности, подлинное же содержание предмета ускользнет, оставив нам лишь одну иллюзию знания. Поэтому абсолютно невозможно достичь полного понимания существа изучаемого нами без обращения к каким-то общим представлениям о строении материи, без учета полной суммы тех сложных взаимодействий, в которые их вплетает всеобщая связь и взаимозависимость явлений. Отсюда и сам итог — это не просто механический результат контакта, но и полная сумма всех его раскатов. Так, например, любая домохозяйка знает, что нельзя к сильно изношенной вещи пришивать заплату, вырезанную из новой ткани: 2 2 сколько так же нельзя вставлять в швейную машину разные по толщине и эластичности нити, ибо сформированный ими шов сможет испортить любую, даже выкроенную по самым модным и престижным лекалам модель. Любой повар, колдующий у плиты, знает, что никакая приправа отнюдь не механически слагается с тем, что уже замешено в кастрюле. Один и тот же ингредиент, добавляемый в одном и том же количестве, может и придать дополнительную пикантность, и бесповоротно испортить вкус приготовляемого блюда. Поэтому талант любого мастера сродни таланту научного исследователя, ибо и у кухонной плиты, и у швейной машинки необходимо мыслить куда более широкими категориями, нежели формальная номенклатура вовлекаемых в единый процесс материалов. Говорят, что секрет старинных скрипок рождавшихся искусством таких волшебников звука, как Амати, Гварнери, Страдивари, таился в составе лака, которым они покрывались. Именно он составлял их главный секрет, именно он придавал звуку ту колдовскую выразительность, которая и делала сами скрипки подлинными шедеврами музыкального искусства.

Можно от простой механики, физики, химии восходить и к более высоким уровням строения вещества, но и там мы обнаружим все то. В результате любого осуществляемого нами синтеза необратимым образом изменяются сами слагаемые. Иначе говоря, по завершении того объединяющего действия, которое может быть описано математической операцией сложения, они оказываются уже совсем не теми, чем были до. Но все следствия производимой операции не ограничиваются одним только этим: Необратимо изменяется гораздо более широкая реальность. В свою очередь, это означает, что и раскрыть подлинное содержание, и расчислить действительно полный результат сложения можно только в том случае, когда будут учтены все — как внутренние, так и внешние, перемены. Пусть нас не убаюкивает то обстоятельство, что все эти изменения могут носить настолько микроскопический характер, что ими можно пренебречь. Пренебрегать в исследовании нельзя вообще ничем, здесь уже говорилось о том, что науку интересует только абсолютный результат. Что же касается его микроскопичности, то что 2 2 сколько начале двадцатого века могло быть незначительней атомного ядра? Но ведь именно его исчезающе малые размеры, как оказалось, таили в себе те силы, которые перевернули весь наш мир. Мы тронули законы сохранения. Но ведь и кроме них существуют влияния, которые сказываются на результатах всех совершаемых нами действий. Поэтому в конечном счете на всех уровнях строения вещества мы рано или поздно обнаружим, что затверженные в детстве истины далеко не столь однозначны и бесспорны, как это когда-то казалось. Но вместе с тем мы обнаружим и другое: А именно того, что все явления этого мира тесно взаимосвязаны между собой, и никакие изменения, происходящие с ними, не могут быть до конца осознаны там, где анализ ограничивается покровом только их собственной вещественной оболочки. Словом, даже самые банальные вещи, мимо которых мы часто проходим, не останавливаясь и не задерживая взгляда, на самом деле скрывают в себе многое из такого, что способно заставить нас пересмотреть привычные представления о мире. Неспособность выйти в более широкий контекст — категорически несовместима с методологически выдержанным научным исследованием. Обратимся под конец к совершенно иному, значительно более сложному, чем те, которые описываются физическими или химическими формулами, классу явлений. В году в Англии был спущен на воду новый корабль, имя которого стало нарицательным, дав название новому классу боевых судов. Он учел не только все достижения передовой кораблестроительной мысли, но и все уроки крупнейшего по тем временам Цусимского сражения, в котором погибла русская эскадра. Новый линкор превосходил по своей мощи все, что плавало по морям в те годы. Правда, с учетом того, что на одни борт могли стрелять только восемь, общее его превосходство по артиллерии не превышало двух крат. Между тем скорость — это тоже оружие, ибо превосходство в ней почта банк спб отзывы клиентов по кредитам, что он легко мог уклониться от боя с превосходящей его соединенной эскадрой боевых кораблей и, напротив, навязать бой любому, кто не обладал преимуществом над.

Кроме того, значительно большее водоизмещение нового линкора позволило поставить на нем гораздо более мощную и развитую, чем та, которой защищались жизненно важные центры броненосцев того времени, броню. Словом, это был синтез всего самого передового, что только могла обеспечить и промышленность самой могущественной империи, и кораблестроительная наука.

2 2 сколько

В результате образовавшаяся здесь сумма качеств сформировала собой нечто неслыханное. Понятно, что все флоты того времени бросились в погоню за Англией, и после года военно-морская мощь держав, претендующих на то, чтобы их голос учитывался при разделе мира, стала исчисляться уже только количеством дредноутов. Цусимское сражение отделяет от первой мировой войны менее 10 лет. Скажем, горной породы из некоторого карьера в отвал. Задача состоит в том, чтобы рассчитать, сколько нужно машин и сколько водителей для выполнения этой работы. При этом примем, что наша условная фирма работает без остановок на выходные и праздники все 24 часа в сутки. Не будем перегружать расчет излишними техническими деталями, существенными только для узких специалистов, предельно упростим его, сохранив, однако, физическое содержание всех анализируемых начал. Прежде всего умножим наш миллион тонн на 12 месяцев и разделим на 40 тонн грузоподъемности и получим рейсов в год. В результате получаем машино-часов. Вновь опустим подробности, важные только для управленцев и нормировщиков, и поделим на дней и еще на 3 смены в сутки. Получим 68, 49 единиц, которые, в зависимости от того или иного контекста расчета, примут размерность автомобилей или человек. Пусть нас не смущают дробные доли единицы: Словом, мы видим, что качественное содержание результата меняется как в калейдоскопе: При этом понятно, что каждая перемена всегда будет вносить что-то свое, с чем обязан считаться любой нормировщик. Сейчас мы это увидим. Но живые люди имеют свойство уходить в отпуск, проводить в кругу семьи выходные и праздники, иногда болеть, отпрашиваться у своего начальника по каким-то личным или семейным делам. Кроме того, кое-кому свойственно прогуливать и попадать в медвытрезвитель, и так далее. Поэтому списочная численность всегда будет несколько больше, ибо нужны дополнительные работники, которые должны заменять отсутствующих, поскольку, повторим, наше производство функционирует все дней в году. Существует свой порядок расчета всех отпусков и выходных дней, а также свои поправочные коэффициенты, позволяющие учитывать и все остальное. Кстати сказать, в разных странах в зависимости от климатической зоны и степени вредности производства эта величина может варьировать. Так, например, Российское законодательство предусматривает увеличенный ежегодный отпуск для работников Крайнего Севера, а также сокращенную продолжительность рабочей смены в условиях вредных производств. В то же время за рубежом подобные трудоохранные меры, как правило, не практикуются.

Если мы говорим о машинах, то те же 68, 49 — это еще не физические единицы, а только абстрактные расчетные величины. Но ведь машины, для того чтобы быть в полной технической готовности, требуют регулярного технического обслуживания и ремонта, иногда они попадают в аварию. Поэтому и здесь переход к списочным автомобилям влечет за собой увеличение их количества по сравнению с уже рассчитанной величиной. Поэтому, несмотря на то, что номинально у нас фигурируют одни и те же единицы, в отличии списочной численности от явочной мы уже не видим никакой ошибки, мы легко соглашаемся с тем, что верны оба результата, но понимаем, что каждый из них справедлив лишь для своего круга условий. А значит, как строгий индикатор необходимости дальнейшего анализа. Ведь дополнительный анализ кажущегося конечным результата обнажает перед нами совершенно новый пласт неведомого, который в свою очередь требует внимательного изучения. При этом вполне разумно предположить, что и следующий результат, тот самый, который должен будет пролить свет на этот новый пласт, образует собой лишь очередную ступень для следующего этапа восхождения. Мы обнаружили, что результат любого сложения, да и любой операции количественного сравнения вообще, в первую очередь отвечает на вопрос: Другими словами, все количественные параметры суммируемых умножаемых, вычитаемых, делимых нами 2 2 сколько конкретных предметов, явлений, процессов будут взять кредит калькулятор рассчитать от конкретных характеристик именно того нового объединяющего начала, к которому они приводятся. А значит, пригодно для измерения вещей, относящихся только и только к этим группам видам, родам, классам и. Но если так, то сплошь и рядом должны наблюдаться примеры того, когда трансформация качественной определенности, которая, как мы видели, неизбежна при сложении разнородных вещей, нарушает предсказываемые математикой соотношения. Почему же мы далеко не всегда видим эти нарушения? И не является ли их отсутствие в поле нашего зрения прямым опровержением всего того, о чем говорилось выше? Может, мы их просто не замечаем? А это уже совсем другое дело, ведь банки в тольятти кредиты наличными факт, что мы их не замечаем, вовсе не значит, что они не существуют. Пример с детской задачкой наглядно подтверждает. Мы постоянно сталкиваемся с ними в нашей практике, но — вот парадокс! Водород представляет собой горючий газ. Кислород, как известно, хорошо поддерживает горение: Отсюда справедливо было бы ожидать, что их соединение будет создавать какую-то страшно взрывную и опасную смесь. Однако в реальности два атома водорода и один атом кислорода порождают нечто прямо противоположное ожидаемому, а именно — химическое соединение, подавляющее огонь.

Другой пример был известен еще нашим далеким предкам. Медь — это очень мягкий металл. Еще более мягкий металл — олово. Но их сплав рождает бронзу, твердость которой через тысячелетия была превзойдена только железом. Мы знаем, что открытие этого парадоксального факта в свое время совершило грандиозную технологическую революцию: Иллюстрации такого рода можно было бы множить и множить. Но почему же тогда выученный в далеком детстве ответ с такой силой давит на наше сознание, что мы способны не замечать даже кричащие факты явного противоречия ему? Почему математические истины представляются нам чем-то незыблемым и универсальным? Почему 2 2 сколько сознание упорно настаивает на том, что результат любого сложения должен соответствовать ему, абсолютно независимо от того, что именно подвергается суммированию? Почему мы всякий раз, несмотря ни на что, видим какой-то скрытый подвох, какой-то изощренный софизм, если не сказать заковыристый кульбит мысли, имеющий целью заставить ее потерять правильную ориентацию, когда нам доказывают что-то противоречащее затверженной истине? Почему в любой количественной аномалии мы склонны видеть только простую ошибку математического расчета и ничего более? Но вглядимся в существо того, что именно суммируется в этом нисходящем к начальной школе примере. Как только мы начинаем анализировать процедуру сложения, мы обнаруживаем, что ее результат — это вовсе не врожденная истина, но продукт какого-то очень сложного интеллектуального построения. По существу здесь мы сталкиваемся с примером одного из самых высоких уровней абстрагирования и обобщений. Ведь любые формы классификации явлений окружающего нас мира, которые тяготеют к условному основанию той пирамиды классов, родов, видов, что упоминалась выше, рано или поздно обнаруживают нарушающий строгость построений логический изъян, и этот изъян заставляет нас восходить на следующий уровень обобщений. Но 2 2 сколько же именно расположен конечный предел этого восхождения ко все более и более абстрактным понятиям? Что скрывает под собой тот высший уровень обобщений, который уже не может содержать в себе никаких логических изъянов, где уже решительно ничто не способно поставить под сомнение всеобщность и абсолютность результата математического сложения? Думается, что ответ в конечном счете способен найти каждый, кто уже прошел начальную школу организации мышления. И этот ответ гласит о том, что самоочевидная математическая истина оперирует отнюдь не предметами, не физическими процессами, не реальными явлениями материального мира. В этом смысле наше сознание может быть уподоблено какой-то огромной камере хранения, которая создается на вокзалах: А затем уже начинаем обманывать сами себя, самих себя, уверяя, что мы сложили именно конкретные вещи, которые обладают вполне конкретными характеристиками и свойствами. Можно привести и другой образ — образ некоторого чистого ярлыка, на котором в принципе можно написать все, что мы захотим: Но что бы мы ни начертали на любом из них после выполнения каких-то количественных операций, он останется абсолютным подобием всем остальным, ничто не изменит его качественной определенности.

Вернее сказать, его абсолютной неопределенности, безликости. В мире объективной, то есть независящей от нашего сознания, и существующей вне его реальности ничего этого просто. Один из крупнейших математиков нашего времени, Бертран Рассел говорил: Существенно здесь, во-первых, игнорирование вопроса, справедливо ли первое предложение, и, во-вторых, игнорирование природы объекта… Математика может быть определена как наука, в которой мы никогда не знаем, о чем говорим, и никогда не знаем, верно ли то, что мы говорим. В сущности он первый, кто задался этим неожиданным вопросом. До него неоспоримо господствовало мнение о том, что именно математические законы и принципы лежат в основе устройства всей Вселенной. Больше того, предполагалось, что сам Господь Бог руководствовался математикой при создании нашего мира. Кант впервые ставит вопрос: То есть математика, истины которой справедливы сами по себе и абсолютно не зависят от нашего опыта, но вместе с тем, применимы ко всем его результатам. Ответ Кант находит в том, что в основе математики лежат не какие-то объективные истины, не основополагающие законы природы, но жесткие схемы, в соответствии с которыми только и может функционировать наше собственное сознание. Строго говоря, этот вывод нисколько не противоречил тому убеждению, согласно которому математические принципы являлись одними из принципов организации породившего этот мир Божественного разума. Ведь человек — это образ и подобие Бога, и если предположить, что над-материальное Существо могло оставить Свое подобие только в этой же над-материальной духовной сфере, человеческий разум оказывался отпечатком Божественного. А значит, и сам обладал возможностью предписывать какие-то законы нашему миру. По Канту в основе всех математических выводов лежат врожденные представления человека о таких предельно общих и отвлеченных началах, как пространство и время. Точно так же, только операции с равными интервалами скрыто созерцаемого нашим же сознанием времени дают нам представление обо всех числах. Поэтому все наши представления о количественной структуре реальной действительности опираются именно на эти внутренние созерцания. Все то, что выходит за пределы ее жесткого заранее сформированного контура, обязано вообще проходить мимо нашего сознания. Не задевая его, как не задевают сознания не знающего грамоты человека все те откровения, которые изложены в книгах. Человек способен организовывать и осознавать свой собственный опыт лишь в строгом соответствии с. Поток всех чувственных восприятий вынужден просто подстраиваться под.

Словом, и та строгая математическая гармония и тот жесткий порядок, которые царствуют в природе, отнюдь не свойственны ей самой по себе, но в действительности лишь проецируются на внешний мир нашим собственным разумом. Именно и только он предписывает миру все обязательные для исполнения законы. Мы привели ссылку на Канта как бы в порядке самооправдания, только для того, чтобы показать, что сомнения в абсолютной истинности стереотипного ответа на вынесенный в заглавие вопрос — это вовсе не аберрация сознания, не кульбит софистической мысли, имеющий целью только запутать собеседника. Больше того, решать его, по-видимому, придется еще не одно столетие. И как бы в подтверждение этого мы видим, что не только сложнейшие, требующие предельного напряжения нашего интеллекта, построения высшей математики, но даже простейшая арифметическая задача обнаруживает сильную зависимость и от каких-то общих господствующих в совокупном сознании цивилизации идей, и от принятой в обществе методологии систематизации явлений. С Кантом спорят и по сию пору. И до сего дня очень многие видят в математике выражение некоторой абсолютной истины, которая кристаллизовала в себе обнаженную до голой схемы структуру самой объективной реальности. Однако и через двести лет с лишком многие соглашаются с ним… Мы не ставим своей задачей разрешить вопрос о соотношении результатов абстрактных математических построений и реальной структуры окружающего нас мира. Но, не тяготея ни к одной из этих полярных позиций, мы вправе смотреть на математику, как на методологию человеческого познания. Вернее сказать, как на специфическую проекцию какой-то единой методологии познавательной деятельности человека, ибо математика, разумеется, не исчерпывает эту роль полностью. Но если так, то любое противоречие тому результату, который прогнозируется ею, должно выступать не только как индикатор ошибки, но и как побудительный стимул к движению в каком-то новом направлении. Если нет такой способности, нет и настоящего исследователя, есть лишь простой ремесленник. Кстати, этот вывод остается справедливым, абсолютно независимо от того, что именно мы готовы признать в этой древней науке. Если же, напротив, мы увидим в ней отражение не зависящих ни от нашей воли, ни от нашего сознания отношений между явлениями внешнего мира, результат останется тем же самым: Словом, методологическая роль математики заключается в том, что, как бы мы ни относились к результату измерения и сопоставления, любая количественная аномалия безупречно выполненного расчета понятно, что о математических ошибках речи вообще не может быть должна расцениваться нами как стимул к дальнейшему поиску. Но если так, то и обнаруживаемые нами противоречия в детстве сколько банки дают кредиты выводу требуют своего разрешения, иными словами, обязывают нас продолжить исследование. Поэтому вернемся к исходному предмету нашего анализа. Мы видели, что для количественного сравнения разнородных вещей необходимо найти какой-то объединяющий их круг.

Разделяемое многими решение заключается в последовательном восхождении от уровня единичных вещей, обладающих какими-то индивидуальными особенностями, к более широким обобщениям. Операция обобщения представляет собой одну из ключевых процедур формальной логики, законам которой обязано подчиняться любое научное исследование. Она предполагает, что в ходе ее строгого и точного выполнения от анализируемых нами явлений последовательно отбрасываются все те отличительные их особенности и характеристики, которые присущи им и только. Если эта операция выполняется правильно, то в результате должны остаться только те свойства, которые одновременно присущи сразу всем явлениям анализируемого круга. Именно совокупность этих свойств и образует собой содержание какого-то нового обобщающего понятия. В схематичном виде ее можно представить следующим образом. Вообразим, что у нас есть три условных объекта x, y, z обладающих какими-то своими условными же характеристиками: Очерченная здесь интеллектуальная операция имеет большое значение в систематизации нашего мышления. Строго говоря, наука вообще начинается именно с обобщений. Дело в том, что индивидуальные характеристики вещей, процессов, явлений, то есть частные свойства, которые присущи лишь единичным объектам, не являются предметом научного исследования. Задача науки как раз и состоит в том, чтобы выявлять общие законы, правила, принципы. А это всегда абстрагирование от всего единичного. Но в действительности вся ее простота и самоочевидность — не более чем иллюзия обыденного сознания. В сущности точно такая же, как иллюзия того, что несоответствие когда-то выученному результату анализируемого нами сложения — это всегда ошибка. Реальная действительность и в этом случае как, впрочем, и всегда оказывается не только значительно сложнее, но и куда интересней. Во-первых, последовательно отбрасывая все, что составляет отличительные особенности единичных вещей, мы значительно обедняем то, что входит в общий круг нашего познания. Больше того, там, где отбрасываются все индивидуальные свойства и в расчет принимаются только те характеристики, которые одновременно свойственны целому классу вещей, сами вещи попросту исчезают. Остаются лишь некоторые абстрагированные от всего осязательного, конкретного условности. Правда, благодаря абстрагированию от индивидуальных особенностей всего единичного и выявлению общих черт, присущих сразу всем явлениям какого-то класса, появляется возможность обращаться со всеми вещами, объединяемыми по некоторому признаку, как с однородными. А следовательно, появляется возможность проводить с ними все операции количественного сравнения. Но при этом нужно постоянно понимать, что все эти операции проводятся уже не с самими вещами, но с некоторыми замещающими их сущностями, которые вбирают в себя лишь ограниченную часть характеристик, изначально свойственных самим вещам. Правда, считается, что с неизбежной здесь утратой конкретности можно пожертвовать ради строгости количественного анализа, ибо именно этим и достигается безупречность конечных выводов.

В предельной же точке такого последовательного абстрагирования точность наших вычислений достигает абсолюта. И математика предстает как своеобразный гимн именно этому абсолюту, как его апофеоз. Но в самом ли деле на пути последовательного отсечения всех индивидуальных отличий можно достигнуть безупречной строгости и непогрешимости результата? Ведь если в итоге мы судим не о самих вещах, но только об их весьма упрощенных моделях, то какое отношение достигаемая точность имеет к ним самим? Во-вторых, очерченная выше логическая операция обобщения в чистом виде не может быть выполнена. Больше того, справедливо было бы сказать: Ведь если бы все обстояло так просто, как это изложено в учебных пособиях по начальному курсу логики, наукой без особого труда мог бы заниматься любой. Но вот проверочный тест: Думается, любой способен обнаружить, что эта задача требует огромного напряжения отнюдь не только логических способностей, но и мобилизации всех наших знаний об окружающем нас мире. Но несмотря ни на какие усилия мысли тот или иной изъян в определениях все равно будет обнаруживаться. Впрочем, такая задача вообще не по силам никому одному: Дело в том, что любое обобщение — это не только исключение каких-то индивидуальных характеристик, но и выявление каких-то дополнительных до поры вообще неизвестно откуда возникающих свойств. Может быть, даже и жестче: Кстати, уже приводившийся нами вывод Маркса, как бы сегодня мы ни относились к его учению, демонстрирует нам именно.

2 2 сколько

С одной стороны, его обобщение стало одним из величайших открытий, когда-либо сделанных человеком, но это открытие не свершилось вдруг, на пустом месте, его подготавливали и великие экономисты, и великие философы. Поэтому нужно дополнить сделанный выше вывод следующим утверждением: При этом важно понять, что те дополнительные качества, которые вдруг обнаруживаются нами, порождаются отнюдь не собственной природой исходных начал, они являются атрибутами совершенно иного, зачастую значительно более широкого, круга явлений. Все это мы уже видели и в детстве, когда от абстрактных функциональных машин, закрыл кредит досрочно хочу вернуть страховку к условной ли штыковой атаке, борьбе ли с хулиганами или к лечению чужих ран, мы переходили к конкретным лицам, воспринимавшихся нами тогда в качестве вполне живых персонажей, и во студенчестве, когда от многообразия товаров переходили к стоимости. Геродот, рассказывая о лидийцах, упоминает 2 2 сколько факт из истории этого древнего народа. Когда земля, на которой они обитали, была уже не в состоянии прокормить ставшее многолюдным племя, часть народа была вынуждена сесть на корабли искать счастья у чужих берегов. Чтобы заглушить голод, они поступали так: Так лидийцы жили восемнадцать лет. Между тем бедствие нее стихало, а еще даже усиливалось. Поэтому царь разделил весь народ на две части и повелел бросить жребий: Сам царь присоединился к оставшимся на родине, а во главе переселенцев поставил своего сына по имени Тирсен. Те же, 2 2 сколько выпал жребий уезжать из своей страны, отправились к морю в Смирну. Греки, а в еще большей степени финикийцы именно таким образом заселили все берега Средиземноморья. Да и впоследствии этот сюжет повторялся неоднократно: Но вот что важно: Но вот пример совсем из другой жизни: Как только длина этой ножки достигает критической величины, ком отрывается и движением воздуха относится на новое место, где образуется новая колония. Таким образом, все это очень сильно напоминает известный еще миг кредит рассчитать Геродотовской Истории сценарий. Но если он реализуется даже на уровне одноклеточных организмов, приходится предположить, что способность действовать в соответствии с этой вечной стратегией каким-то таинственным образом формируется не только в человеческом, но и в любом живом сообществе. Трудно предположить, что такая стратегия заранее заложена в генетической памяти каждой отдельно взятой клетки. Поэтому необходимо признать, что там, где из отдельных, наделенных своими особенностями индивидов формируется новый уровень организации живой материи — сообщество организмов, вдруг появляются и какие-то новые свойства, которыми не обладают индивиды. Но если так, то все эти и, возможно, какие-то иные, о существовании которых мы пока 2 2 сколько и не догадываемся, качества, не присущие отдельно взятым индивидам, в свою очередь должны входить в итоговую сумму.

Именно эта не всегда заметная но всегда существующая!

3 thoughts on “2 2 сколько”

  1. Извините за то, что вмешиваюсь… Мне знакома эта ситуация. Можно обсудить.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *